Nonlinear estimation-based dipole source localization for artificial lateral line systems.

نویسندگان

  • Ahmad T Abdulsadda
  • Xiaobo Tan
چکیده

As a flow-sensing organ, the lateral line system plays an important role in various behaviors of fish. An engineering equivalent of a biological lateral line is of great interest to the navigation and control of underwater robots and vehicles. A vibrating sphere, also known as a dipole source, can emulate the rhythmic movement of fins and body appendages, and has been widely used as a stimulus in the study of biological lateral lines. Dipole source localization has also become a benchmark problem in the development of artificial lateral lines. In this paper we present two novel iterative schemes, referred to as Gauss-Newton (GN) and Newton-Raphson (NR) algorithms, for simultaneously localizing a dipole source and estimating its vibration amplitude and orientation, based on the analytical model for a dipole-generated flow field. The performance of the GN and NR methods is first confirmed with simulation results and the Cramer-Rao bound (CRB) analysis. Experiments are further conducted on an artificial lateral line prototype, consisting of six millimeter-scale ionic polymer-metal composite sensors with intra-sensor spacing optimized with CRB analysis. Consistent with simulation results, the experimental results show that both GN and NR schemes are able to simultaneously estimate the source location, vibration amplitude and orientation with comparable precision. Specifically, the maximum localization error is less than 5% of the body length (BL) when the source is within the distance of one BL. Experimental results have also shown that the proposed schemes are superior to the beamforming method, one of the most competitive approaches reported in literature, in terms of accuracy and computational efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer--metal composite flow sensors

Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on ...

متن کامل

Artificial lateral-line system for imaging dipole sources using beamforming techniques

In nature, fish have the ability to localize prey, school, navigate, etc. using the lateral-line organ [1]. Here we present the use of biomimetic artificial hair-based flow-sensors arranged as lateral-line system in combination with beamforming techniques for dipole source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of di...

متن کامل

Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.

In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamformi...

متن کامل

Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors

An engineered artificial lateral-line system has been recently developed, consisting of a 16-element array of finely spaced MEMS hot-wire flow sensors. This represents a new class of underwater flow sensing instruments and necessitates the development of rapid, efficient, and robust signal processing algorithms. In this paper, we report on the development and implementation of a set of algorith...

متن کامل

An artificial lateral line system using IPMC sensor arrays

Most fish and aquatic amphibians use the lateral line system, consisting of arrays of hairlike neuromasts, as an important sensory organ for prey/predator detection, communication, and navigation. In this paper a novel bio-inspired artificial lateral line system is proposed for underwater robots and vehicles by exploiting the inherent sensing capability of ionic polymermetal composites (IPMCs)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinspiration & biomimetics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2013